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Abstract. We show there are putative pitfalls when one predicts the magnetoresistance of magnetic tunnel
junctions (JMR) based on different toy models. Amongst them are the sensitivity of the MR to the details
of the profile of the potential barrier between the metallic electrodes and the insulating barrier, and the
common assumption of only one band of electrons. We indicate the ingredients that are necessary to obtain
a more complete description of the JMR of magnetic tunnel junctions.

PACS. 73.40.Gk Tunneling – 73.50.Jt Galvanomagnetic and other magnetotransport effects (including
thermomagnetic effects) – 75.70.Cn Interfacial magnetic properties (multilayers, magnetic quantum wells,
superlattices, magnetic heterostructures)

1 Introduction

The recent success in growing magnetic tunnel junctions
(MTJ’s) [1,2] has lead to a resurgence of interest in their
magnetoresistance (JMR). As tunnel junctions have been
studied over the past four decades a number of toy mod-
els (theoretical approaches with simplifying assumption)
have been used to understand experimental data; one can
classify these approaches into two broad categories: con-
tinuous [3] and lattice [4] models. Within a continuous
model, the existence of lattice sites is overlooked and the
electronic structure for the electrodes are assumed to be
those of the metal in bulk form, i.e., one overlooks the
variation of the band structure in a metallic electrode near
its interface with the insulating barrier. In this approach,
by suitably choosing a model potential for the insulating
barrier, transmission coefficients for electrons from left to
right electrodes can be calculated and thereby the conduc-
tance and tunnel current. While the calculations can be
done exactly for a given electronic structure and potential
profile of the barrier, it is hard to justify these model po-
tentials. We will show that magnetoconductance depends
strongly on the profile of the barrier potential, therefore
approximations for the barrier potential can introduce se-
vere errors in predicting conductance and magnetoresis-
tance of a tunnel junction (JMR). In lattice models, one
distinguishes electronic structures at interfaces from that
in the bulk. As it is not possible to do self consistent equi-
librium calculations in the presence of a finite potential
across a junction one breaks it up into isolated systems so
that they are non-conducting. Then one uses the Keldysh
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formalism [4] to derive conductance when interactions be-
tween these isolated systems are turned on.

Here we wish to clarify some of the ambiguous conclu-
sions and contradictory results derived from these two ap-
proaches. The paper is organized as follows. In Section 2,
we consider a free electron one band (continuous) descrip-
tion of tunneling through a barrier and demonstrate that
the conductance is sensitive to the details of the barrier po-
tential. Next we review the transfer Hamiltonian method
and point out the importance of considering the contri-
butions from several bands to tunneling in order to avoid
the cancellation of the density of states in the tunneling
current. In Section 4, a tight-binding lattice description is
discussed, and in Section 5 the effects of interfacial rough-
ness on tunneling are taken into account. We summarize
the strengths and deficiencies of the approaches we have
outlined in the concluding section.

2 Free electron models

Let us consider free electrons in a MTJ consisting
of metal(1)/insulator/metal(2). The flat potentials of
metal(i) (i = 1, 2) are Vi, and the barrier potential is
U(x). If the metallic electrodes are magnetic, the poten-
tials Vi have spin indices. Since we do not consider spin-
flip processes each spin channel can be treated indepen-
dently; therefore we drop the spin labels and show them
only when they are needed. The junction possesses trans-
lation invariance in the plane of the layers that comprise
the junction, therefore momentum parallel to the planes
(k||) is conserved. The wavefunction of an incoming wave
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from the left electrode (1) is

Ψ(r) = φ1(x) exp(ik‖ · r‖) (1)

where

φ1(x) = exp(ik1x) + r exp(−ik1x),

for x < 0,

φ2(x) = t exp(ik2x),

for x > d, and the wave function in the barrier region
satisfies the equation

~2

2m
φ
′′

b(x) =

(
ε−

~2k2
‖

2m
− U(x)

)
φb(x),

for 0 < x < d. Here d is the thickness of the barrier,
and k1,2 =

√
2m(εF − V1,2)/~2 − k2

‖. For a given poten-
tial profile, one can determine the wavefunction in the
barrier, and the transmission amplitude t can be found by
matching wavefunctions and their derivatives at x = 0
and x = d. If one chooses a square potential barrier,
Slonczewski found the conductance is [3]

G = (e2/~)
∑
k‖,σ

16k1k2k
2
b exp(−2kbd)

(k2
1 + k2

b)(k2
2 + k2

b)
(2)

where kb =
√

2m(U − εF)/~2 + k2
‖. From this one might

conclude that in the limit of a high barrier potential
(kb � k1 k2) the tunnel conductance is proportional to
the density of states of the electrodes (k1 and k2).

Unfortunately, such a conclusion is limited to this spe-
cial choice of the square potential, i.e., where the potential
changes abruptly. To see this, let us assume the potential
varies rather slowly so that the WKB approximation is
valid. Then the wavefunction is given by,

φ(k‖, x) =
C√
kx(x)

exp
(

i
∫ x

kx(x1)dx1

)
(3)

where C is the normalization constant. From the definition
of the transmission amplitude, below equation (1), we have

t =
φ(k||, d)
φ(k||, 0)

=
√
k1

k2
exp

(
−
∫ d

0

kb(x)dx

)

where we have defined kb(x) = ikx(x) to represent the
imaginary momentum in the barrier. By using this trans-
mission amplitude, the WKB conductance is,

G = (e2/~)
∑
k||,σ

|t|2k2/k1

= (e2/~)
∑
k||,σ

exp

(
−2
∫ d

0

kb(x)dx

)
. (4)

By comparing equations (2, 4), one clearly sees that the
density of the state factor does not enter the tunnel con-
ductance in the WKB approximation. As the actual po-
tential in a junction changes on the scale of a lattice con-
stant, neither the abrupt change nor the slow variation
in the barrier potential are realistic for modeling actual
tunnel junctions. We conclude that tunnel conductance is
quite sensitive to the details of potential profiles.

To make this more apparent we choose a square po-
tential barrier (as for Eq. (2)) with an extra step at both
sides of the interface, e.g., the potential is given by U

′
for

0 < x < a0 and d−a0 < x < d and U for a0 < x < d−a0,
where a0 is the width of the step at either side of the inter-
face. In this case, a tedious yet straightforward calculation
lead to the conductance

G = (e2/~)
∑
k||,σ

16k1k2k
2
b exp(−2kb(d− 2a0))

X1X2
(5)

where

Xi = (k2
b + k2

i ) cosh2(k′a0) + (k′2 + k2
bk

2
i /k
′2) sinh2(k′a0)

− (kbk
2
i /k
′ + kbk

′) sinh(2k′a0), (6)

i = 1, 2, k′ ≡
√

2m(U ′ − εF)/~2 + k2
|| , and we have

neglected the term proportional to exp(−6kbd) which is
much smaller than exp(−2kbd) since kbd � 1 for a typ-
ical junction. This conductance is different from that for
the simple square barrier, equation (2), and the WKB re-
sult, equation (4). As k′a0 is the order of one, it is hard
to see from equation (6) how the conductance is related
to the density of states. In Figure 1, we show the depen-
dence of the magnetoresistance on the height of the step
U ′, for two widths a0 = 0 (abrupt potential) and 2 Å;
for simplicity we have taken the high barrier limit so that
only k‖ = 0 contributes to conduction in the free electron
model. As the height of the step increases, the magnetore-
sistance first decreases to zero, the WKB result, and then
increases to that of the abrupt potential. Therefore, even
for the simple profiles of the potentials we have consid-
ered, magnetoresistance is quite sensitive to details of the
structure of the potential barrier.

To obtain a more transparent expression for the role
of the interface potential we can also include scattering at
the metal-insulator interfaces. As one has frequently done
for modeling the interface between a superconductor and
a non-superconducting metal, we replace the extra step
in the above paragraph by one with zero thickness yet
with an integrated scattering strength, i.e., a delta func-
tion [5]. By modeling the scattering at the metal-insulator
interfaces with U1 = ξ1δ(x), and U2 = ξ2δ(x−d), the con-
ductance equation (2) becomes

G = (e2/~)
∑
k‖,σ

16k1k2k
2
b exp(−2kbd)

[k2
1 + (ξ1 − kb)2][(k2

2 + (ξ2 − kb)2]
· (7)

In comparison with junctions without scattering at in-
terfaces (ξ1 = ξ2 = 0) a significant change occurs
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Fig. 1. The magnetoresistance ratio of a tunnel junction as
a function of U ′, the potential of the extra steps at interfaces
of the barrier and the electrodes, in the limit of a high barrier
(kb � ki). We have chosen the step width a0 = 2 Å, and
k↑/k↓ = 3 for all the curves so that the magnetoresistance is
66.7% for an abrupt potential (a0 = 0). The three curves are
for k↓ = 0.5 Å−1, 1.0 Å−1 and 2.0 Å−1 respectively. Note that
zero magnetoresistance corresponds to the WKB limit.

in the denominator of the tunnel conductance. If the scat-
tering at the two interfaces is different, e.g., ξ1 = kb

(strong scattering at x = 0 interface) and ξ2 = 0 (weak
scattering at x = d interface) which corresponds to a
rough and a smooth interface, the conductance goes as
G ∝ k2/k1, i.e., it is inversely proportional to the den-
sity of the states of one electrode and proportional to the
density of states of the other. In this case, one would ex-
pect an inverse JMR, i.e., conductance is larger when the
magnetization of the electrodes are aligned antiparallel.
This might explain the inverse JMR observed in junctions
where the barrier is TiO/Al2O3 [6], and the effect seen by
Moodera when a non magnetic metallic layer is inserted
between the insulator and magnetic electrode [7].

Summarizing this section, we have shown that while
free electron one-band models of MTJ’s capture some es-
sential features, e.g., the conductance is mainly governed
by the exponent of the product kbd, their predictions for
the magnetoresistance are unreliable, because the MR is
sensitive to the profile of the metal-insulator barrier po-
tential, which is poorly known. Thus, the JMR calculated
by assuming a certain profile have no quantitative sig-
nificance. This dependence of tunneling in MTJ’s on de-
tails of the potential comes from the size, 1-2 Å, of the
wavelength of the carriers in MTJ’s being comparable to
the distance over which the potential changes across the
metal-insulator interface. For semiconductor heterostruc-
tures, where the wavelength of the carriers is of the order
of 100 Å, this problem does not appear, and it is quite ac-
ceptable to model the change in the potential between two
semiconductors with an abrupt step. As we have shown
elsewhere [8] the short wavelength, or inversely the large

wavevector of the carriers, in MTJ’s is also the cause for
a loss of coherence in transmission through metallic junc-
tions.

3 Transfer Hamiltonian

Transition metal electrodes have several bands crossing
the Fermi level, therefore the question arises: which band
makes the dominant contribution to tunneling? Conven-
tional wisdom has it that the d electrons, which are spin
polarized, do not contribute much to tunneling as they
are tightly bound; rather its the itinerant s−p electrons,
which are weakly spin polarized through s−d hybridiza-
tion, that tunnel. From tunneling experiments into super-
conductors it has been established that tunnel currents are
majority spin polarized for Ni, Co, Fe and their alloys [9].
This is at odds with the density of states in these metals
which are larger for minority than for majority spins, i.e.,
at least for Co and Ni. Here we show that the transfer
Hamiltonian approach [10] together with the WKB ap-
proximation, which had been developed to understand
superconducting junctions, is a useful way to describe
tunneling when several bands are present. Among other
things we show that the cancellation of the density of
states in the tunneling current, and concomitantly null
JMR, comes from considering only one band; when there
is more than one band of electrons in the metallic elec-
trodes there is a JMR in the WKB approximation.

The Hamiltonian for the magnetic electrodes can be
written as,

Hp =
∑
kσ

εpkc
p
kσc

p+
kσ +

∑
kσ

fpkσd
p
kσd

p+
kσ +

∑
kσ

W p
kc
p+
kσd

p
kσ

(8)

where p represent the left (p = L) and right (p = R) elec-
trodes, ckσ and dkσ are the annihilation operators for the
itinerant (which we nominally call s although p electrons
are also present) and d electrons, and Wk represents the
s-d hybridization through which the itinerant (s) electrons
are polarized. The Hamiltonian for the whole MTJ is,

H = HL +HR +HT (9)

where HT describes the transfer of electrons from the left
to right electrodes

HT =
∑
kqσ

{
[T (c)

kq c
L+
kσ c

R
qσ + T

(c)
qk c

R+
qσ c

L
kσ]

+[T (d)
kq d

L+
kσ d

R
qσ + T

(d)
qk d

R+
qσ d

L
kσ]
}

(10)

where the T (c,d)
kq are matrix elements describing the trans-

fer; while they can be calculated from first principles [11]
here we consider them as phenomenological parameters.
JMR is sensitive to details of the potential profiles, as
we showed in the preceding section, and to the coupling
between electrodes and insulating barrier. The strength
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of the transfer Hamiltonian approach is that one need not
specify these details. For a one band description there is
only one matrix element Tkq of HT; in the WKB approx-
imation it is given as [12] T 2

kq ∝ [ρL(Ek)ρR(Eq)]−1 where
the ρp′s are density of states of the electrodes. As we show
below the tunnel conductance is proportional to T 2ρLρR;
therefore, for a normal metal the tunnel conductance is
independent of the density of states of the electrodes due
to their cancellation in this product.

When there is more than one band that crosses the
Fermi level one needs to specify which band(s) partici-
pate in tunneling. We make the critical assumption that
the itinerant, nominally s, electrons are the dominant elec-
trons that participate in the tunneling. This is clearly an
ansatz, which is motivated by the form of the transfer
Hamiltonian used for superconducting junctions [13,14],

HT
super =

∑
kqσ

[Tkqa
+
k aq + h.c.] (11)

where ak is the annihilation operator of the normal elec-
tron. This is equivalent to saying that only normal elec-
trons, and not the superconductor quasi-particles, tunnel
through a barrier; this was justified by noting that the
presence of the barrier breaks the pairing of the supercon-
ducting electrons in the barrier. With this ansatz, Cohen
et al. [13] were able to show that the tunnel current in
a superconducting tunnel junctions is proportional to the
density of the states of the superconductor. In the same
spirit, we argue that s−d hybridization is not present in
the barrier region and only the itinerant parts (nominally
s electrons) of the hybridized bands in the electrodes par-
ticipate in the tunneling [15]. In analogy with supercon-
ductor junctions we suppress tunneling by d electrons in
equation (10) and write the transfer Hamiltonian as,

HT =
∑
kqσ

[Tkqc
L+
kσ c

R
qσ + Tqkc

R+
qσ c

L
kσ] (12)

where the matrix element Tkq is inversely proportional to
the density of states of the electrodes, i.e.,

T 2
kq =

C2

ρL(Ek)ρR(Eq)
, (13)

in the WKB approximation. We now show how the tunnel
current can be calculated rather straightforwardly with
this Hamiltonian.

The rate of change of the number of electrons in the
left electrode is

i~
dNL

dt
= [NL,H] = [NL,HT] (14)

where NL =
∑

kσ

{
cL+
kσ c

L
qσ + dL+

kσ d
L
qσ

}
, and clearly

[NL,Hp] = 0. Explicitly, one finds

i~
dNL

dt
=
∑
kqσ

Tkq[cL+
kσ c

R
qσ − h.c.]. (15)

The tunnel current is just the average of edNL

dt . The aver-
age 〈cL+

kσ c
R
qσ〉 can be directly calculated by an exact equa-

tion of motion method [16] and we find

I = e
∑
kqσ

∫
dε|Tkqσ|2AR(qσ, ε)AL(kσ, ε + eV )

× [nF(ε)− nF(ε+ eV )] (16)

where the A’s are spectral functions of the s electrons,
nF(ε) is the Fermi distribution function, and the transfer
matrix is, according to the WKB approximation [12] in-
versely proportional to the product of the density of the
states as given by equation (13). It remains to calculate
the spectral function of s electrons. The Green’s function
is

Gpss(ε) =
[
ε− εpk −

(W p
k )2

ε− fpkσ

]−1

(17)

with poles at ε = Epkσ,

Epkσ =
εpk + fpkσ

2
±

√
(W p

k )2 +
(
εpk − f

p
kσ

2

)2

, (18)

where εpk and fpkσ are energies of the s and d electrons;
see equation (8). The residues (renormalization) at these
poles are

Zpkσ =
(

1 +
(W p

k )2

(Epkσ − f
p
kσ)2

)−1

. (19)

Then the s electron spectral function is

Ap(kσ, ε) ≡ −Im Gpss = 2πZpkσδ(ε−E
p
kσ). (20)

By placing equations (13, 20) into equation (16), and by
making a change in variables for the sum entering equa-
tion (16) ∑

kq

=
∫
ρL(Ekσ)ρR(Eqσ)dEkσdEqσ, (21)

we finally arrive at

I =
∑
σ

2πe2C2Z̄σL Z̄
σ
RV (22)

where Z̄σ is the average of the renormalization factor
equation (19); note we have limited ourselves to low tem-
perature and bias. While the density of states in the trans-
fer matrix elements equation (13) cancel those in equa-
tion (21) the renormalization Z̄σ contains information
about the spin polarization of the s electrons through s−d
hybridization.

The presence of the renormalization factor allows us to
understand why, for transition-metal electrodes, majority
electrons have higher conductance (tunneling rate) when
minority d electrons have larger density of states at Fermi
level (Ek↓ = εF): minority electrons are more strongly
hybridized (smaller Epk↓ − fpk↓), which leads to smaller
Zpk↓ in equation (22), and thereby smaller tunnel currents
for minority s electrons.
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4 Spin-polarized tunneling in a tight-binding
description

From the proceeding sections, we realize that it is de-
sirable to have more accurate descriptions of tunneling,
e.g., to obtain more accurate transfer matrix elements,
equation (10), than those given by the WKB approxi-
mation equation (13). In particular, a spatially resolved
treatment, i.e., a local description of the bands, seems
necessary. The tight-binding method developed by Caroli
et al. [4] clearly serves this purpose. To ascertain which
features of the transition metals are most important in
producing JMR we extend Caroli’s method to include the
multiple bands at the Fermi level of the transition metals
and their spin polarization [17].

Tunnel conductance is formulated in a tight binding
model as

G = (e2/~)
∫

dεTr(ραLtρ
β
Rt

+) (23)

where ραL is the density of states at the surface α of the
isolated left electrode, ρβR that at the surface β of the iso-
lated right electrode, and t is the renormalized transfer
matrix which describes the coupling between the isolated
left and right electrodes. These isolated systems are de-
fined such that there is no transfer of electrons between
them, i.e., the Green’s function Gij is identically zero if
i and j belong to different electrodes. As pointed out by
Feuchtwang [18] this condition on the Green’s function is
not absolutely required to define isolated systems, how-
ever we find it convenient in deriving some meaningful
relations.

There are two convenient ways to spatially define left
and right systems. The first is for the left system to com-
prise the left electrode only and not to include the barrier
region, and similarly for the right system; another way will
be discussed later. In this case the density of states ραL and
ρβR are density of states of at the surfaces of isolated elec-
trodes. These density of states are not the physical ones
at the interface of a metal-insulator or metal-vacuum con-
tact; these latter quantities allow for charge to spill over
from the metal into the insulator or vacuum, i.e., Gij 6= 0
for i in the electrode and j in the barrier, while the former
quantities do not allow such leakage (Gij = 0). With these
left and right systems, one finds that the transfer matrix
is

t = VαaGabVbβ (24)

where

Gab=
gab

(1−V 2
αag

L
ααgaa)(1−V 2

bβg
R
ββgbb)−V 2

αaV
2
bβg

2
abgaagbb

(25)

is the Green’s function between plane a at the left end of
the barrier (adjacent to α in the left electrode) and b at
the right hand end (adjacent to β in the right electrode).
The uncoupled Green’s function for the insulator is gab,
Vαa is the hopping matrix between α and a, and Vbβ is

the hopping matrix between b and β. One might jump
to the conclusion from equations (23-25) that the tunnel
conductance is proportional to the density of the state at
the interfaces, ραL and ρβR; at least in the limit of weak
interactions between the electrodes and insulator (small
Vαa and Vbβ). This conclusion is somewhat too rash for
two reasons: the first is that the matrix element Vαa and
Vbβ are expected in some way to depend on the density
of states of the electrodes; the second is that the density
of the states at the surface of an isolated electrode is not
the physical density of the states of the surface of that
electrode. While the first point is hard to address without
lengthy ab initio calculations [11], we will now show the
difference between the two density of states [19].

Let’s assume a bulk electrode is separated into two
identical isolated systems by slicing it midway between
neighboring planes A and B. Then the Hamiltonian for
the electrode is the sum of two isolated parts plus a hop-
ping term VAB between A and B. If one restricts hopping
to nearest neighbors, VAB represents hopping across the
interface. If one considers hopping beyond nearest neigh-
bors, A and B each represent multiple planes (supercell)
and VAB will be a supermatrix. The Green’s function of
the bulk electrode at A (actually any plane) is,

GAA = gAA + gAAVABGBA (26)

where

GBA = gBBVBAGAA (27)

and gAA and gBB are the Green’s functions at the sur-
faces of the left and right isolated systems. From symme-
try gAA = gBB and VAB = VBA = V , so that we find

GAA = gAA[1− gAAV gAAV ]−1, (28)

i.e., the Green’s function of the bulk is directly related to
the isolated interface Green’s function gAA. In the limit of
weak hopping they become the same. Alternatively, one
can express the isolated gAA in terms of Green’s function
for the bulk by solving the above equations. By eliminating
the hopping matrix from equations (26, 27), we find

gAA = (GAAG
−1
BA −GBAG

−1
AA)(G−1

BA −G−1
AA)−1. (29)

That is, the isolated Green’s function gAA and thereby the
density of states ρ at the surface are solely determined by
the Green’s functions GAA and GBA of the bulk.

One concern one might have about the tight bind-
ing approach is whether the conductance depends on the
choice of the isolated systems. In equation (23), it ap-
pears that conductance is related to the density of state
at the surface of the electrodes. However, if one chooses
for isolated systems the electrode each with half of the
insulator-barrier, then equation (23) would imply that the
conductance is related to the density of states at the mid-
dle of the insulator. In fact, when we take account of the
weak hopping inside the insulator, we can show that this
density of states is proportional to that at the surface
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of the electrode. To see this we write down Dyson’s equa-
tion in the limit of weak V as

gii = gii0 + gii0 Vi,i−1g
i−1,i−1Vi−1,ig

ii
0 , (30)

where i represents a plane in the middle of the insulator,
gii0 = (ε − U)−1 is the Green’s function of the isolated
insulator (if the barrier is a vacuum U is the work func-
tion), gii is the Green’s function of the isolated system
defined as the left electrode with i layers of the insulator,
and gi−1,i−1 the Green’s function of the isolated system
defined as left electrode with i− 1 layers of the insulator.
Since gii0 is always real at the Fermi energy (for an insula-
tor there are no states at the Fermi level), one finds that
the density of states, which is the imaginary part of the
Green’s function, is

ρii = [V gii0 ]2ρi−1,i−1, (31)

where we set Vi,i−1 = Vi−1,i ≡ V . By repeatedly using this
relation we find ρii in terms of ρi−i,i−i ≡ ρss, the density
of states at the surface of the isolated electrode,

ρii =
(

V

ε− U

)2i

ρss ≡ exp(−2kbtb)ρss (32)

where tb is the thickness of the insulator, and

kb =
1

2a0
ln(
|ε− U |
V

) (33)

where a0 is the distance between atomic planes. There-
fore the density of states at the center of the insulator is
indeed proportional to density of states at the surface of
the isolated electrode; the constant of proportionality is
simply an exponentially decaying factor.

5 Effects of interface roughness

Up till now, we have not considered effects of disorder in
magnetic tunnel junctions. However, actual junctions con-
tain large amounts of disorder in the barriers as well as at
interfaces with electrodes. When one compares theoretical
models to experimental data, the effect of disorder must
be taken into account.

Among other effects disorder introduces complex
mechanisms that assist tunneling. At low temperatures
contributions from impurity states in the barrier can be
quite significant. As these states usually do not depend on
spin, and as spin relaxation in these states is faster than
the tunneling rate, their presence reduces magnetoresis-
tance [20]. Also, effects of disorder within the insulator
on tunneling and JMR has been recently considered by
Tsymbal and Pettifor [21]. As detailed discussions of im-
purity assisted tunneling can be found in the book by
Wolf [22], here we concentrate on disorder at interfaces,
i.e., interface roughness.

The simplest type of interface roughness is “geomet-
ric roughness”, i.e., fluctuations in layer thickness while
the interface remains flat on an atomic length scale. In

this case the local electronic structure does not deviate
from that of an ordered structure of the same thickness,
and tunnel conductance is simply the sum over the entire
junction that is comprised of regions (areas) of different
thicknesses. Due to the strong dependence of tunnel con-
ductance on thickness of the barrier those areas which
have smallest barrier thickness contribute most to con-
duction. To obtain a more quantitative estimate of the
effects of geometric roughness we describe it’s profile by a
Gaussian distribution function, i.e.,

P (x) =
1√

2π∆
exp

[
− (x− d̄)2

2∆2

]
(34)

where d̄ is the average thickness of the barrier and∆ is the
root-mean-square deviation. The thickness dependence of
tunnel conductance is proportional to exp(−2kbx), e.g.,
see equation (2), so that the average of the conductance
over the above distribution of thicknesses is proportional
to

Ḡ(d̄) ∝
∫
P (x) exp(−2kbx)dx = exp

(
−2kb[d̄− kb∆

2]
)
.

(35)

The effect of this geometrical roughness is expressed by
a reduction in the nominal thickness of the barrier by
kb∆

2. Therefore, the barrier thickness found by fitting
I−V characteristics of a junction to Simmon’s formula
yields an effective thickness which depends on the rough-
ness.

Other forms of roughness, such as interdiffusion, dis-
locations, stacking faults and vacancies at interfaces, in-
fluence JMR in more complicated ways. Electronic struc-
ture at an interface is significantly altered by these types
of roughness. As we have seen in previous sections, tun-
nel magnetoresistance and conductance depend critically
on details of this structure and the concomitant hopping
across such imperfect interfaces. At present it is difficult
to perform first principle calculations which include these
effects, therefore phenomenological approaches are more
realistic. One approach, first taken by Caroli [4], is to av-
erage over k|| the density of states and transfer matrices
entering the conductance so that one is left with a one
dimensional integral over energy, see equation (23); at low
temperatures this reduces to evaluating these components
at the Fermi energy. One can also represent the diffuse
scattering at interfaces due to interfacial roughness by a
delta function whose strength is given by a phenomeno-
logical parameter ξi as was done in our derivation of equa-
tion (7); by fitting this expression to data on different elec-
trodes and barriers we are able to determine ξi. Finally,
Itoh et al. [23] took account of “strong disorder” by ex-
pressing tunnel conductance in terms of phenomenological
self-energies for the interfaces.

In concluding this section we note that the effects of
interface roughness on JMR are dramatic; yet only crude
phenomenological approaches are presently available to
deal with it.
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6 Discussion

We have outlined three models for the magnetoresistance
of tunnel junctions: the free electron one band model
with a chosen profile of the potential barrier; the trans-
fer Hamiltonian method with a transfer matrix elements
given by the WKB approximation; and the tight-binding
description of tunneling. Here we summarizes their advan-
tages and deficiencies.

While tunnel conductance can be exactly calculated
for a given potential profile in the free electron model the
JMR derived from this approach is not reliable, because
magnetoresistance is sensitive to the profile of the poten-
tial barrier. Approximations such as δ function-like poten-
tials at interfaces and a square barrier for the insulating
layer dramatically change the prediction for the JMR. Due
to the arbitrariness in choosing the potential profiles, this
method is unreliable for estimating the magnetoresistance
of tunnel junctions. However, this approach is easy and
physically transparent; it correctly gives the exponential
decay of the current with the thickness of the barrier. It
strength lies in the simplicity of the assumed potential
profile and band structure; it is useful much as Simmon’s
formula is useful in analyzing the I−V characteristics of
tunnel junctions.

The transfer Hamiltonian is a many-body description
of the tunneling, inasmuch as it contains several bands at
the Fermi level, and hybridization between them. The dif-
ficulty of this approach is the ill-defined transfer matrix
elements; usually they are considered as phenomenological
parameters. By using the WKB approximation one is able
to link these matrix elements to the electronic structure of
the electrodes, see equation (13); however, this approxima-
tion is questionable because the potential changes rapidly
between the electrode and barrier on the length scale of
the wavelength of the carriers at the Fermi surface. As we
showed in Section 3 if we suppress tunneling by d electrons
it is possible to explain the positive spin-polarized current
seen by experiments with transition-metal electrodes with-
out additional assumptions. Another advantage of this ap-
proach is that one can include a number of inelastic phys-
ical excitations into the tunneling process [24]. We have
shown previously that surface magnon-assisted tunneling
can be easily dealt with within this approach [25]; other
inelastic processes, such as the effects of trapped impurity
states and localized phonons, can be included on an equal
footing to those we considered.

The tight-binding approach relates tunnel conductance
and magnetoresistance to electronic structures for isolated
electrodes and to the hopping matrix elements between
electrodes and the insulator. The electronic structures of
the isolated electrodes can be accurately determined from
the bulk properties of the electrodes. Some predictions
can be made with this method. For example, in the limit
of weak and spin independent hopping between the elec-
trodes and the insulator, tunnel conductance and mag-
netoresistance are related to the density of states of the
bulk electrodes. This method is capable of taking into ac-
count realistic electronic structures. Moreover, since this
approach emphasizes local electronic structure, it is quite

possible to deal with more complicated junctions, e.g., in-
serting a thin metal layer at the interface. However, to
obtain reliable information from this approach one needs
to know details of the hopping matrix elements such as:
the relative strengths of the s−p and d electron hopping,
the range of the hopping, whether its limited to the first
few nearest neighbors or not, and the spin dependence of
the hopping [17]. At this time these details are not known
for Al2O3, the insulator used in many tunnel junctions;
therefore, it would be serendipitous if the theoretically
determined magnetoresistance agreed with experimental
data.

We are currently at the stage of qualitatively under-
standing some features of magnetic tunnel junctions that
control their magnetoresistance, e.g., that JMR is related
to the itinerant density of states of the electrodes. All of
the methods we considered suffers a common drawback:
the need to know details about the coupling between elec-
trodes and the insulator; these are poorly known at the
present time for the junctions that have been studied. It
is very difficult at this time to do ab initio calculations for
junctions with an insulator such as alumina; albeit, a first
step in this direction has been taken [26]. Therefore, it is
interesting to examine simpler systems, e.g., by replacing
the real insulating barrier by a vacuum spacer [11,27]. The
advantage of this simple system is that ab initio calcula-
tions are now possible; some of the features of tunneling
through a vacuum barrier may well be similar to those
when one uses alumina or other insulating spacer materi-
als. Also, such a calculation is directly applicable to data
on spin-polarized field emission experiments where there
is truly a vacuum. The results of these calculations for a
vacuum spacer will be published elsewhere [11].
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